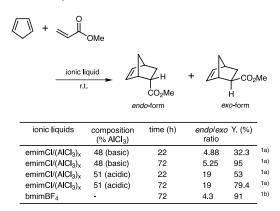

X

Sulfonium Salts

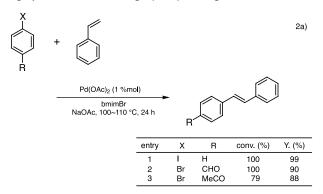
 \bigcirc

In recent years, environmentally-friendly reaction processes have vigorously been studied from the standpoint of green chemistry. For example, oxidation reactions with the air, or reactions in water, supercritical fluids, and fluorous solvents are cited. Most recently, ionic liquids have gained much attention as green reaction solvents for organic synthesis.

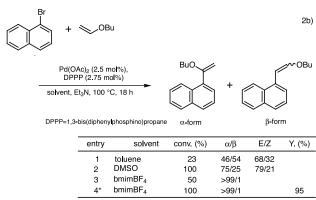

As seen above, ionic liquids are salts, consisting of cations such as imidazolium, pyridinium, quaternary ammonium and quaternary phosphonium, and anions such as halogen, triflate, tetrafluoroborate and hexafluorophosphate, which exist in the liquid state at relatively low temperatures. Their characteristic features include almost no vapor pressure, non-flammability, non-combustibility, high thermal stability, relatively low viscosity, wide temperature ranges for being liquids, and high ionic conductivity. When an ionic liquid is used as a reaction solvent, the solute is solvated by ions only, where the reaction proceeds under quite different conditions as compared to using water or ordinary organic solvents. Hence, they are expected to exhibit unconventional reactivity, and their applications in a variety of organic reactions are being explored.

lonic liquids containing chloroaluminate as the anion have been investigated for many years. These ionic liquids are not only used as reaction solvents, but also exhibit Lewis acid or Lewis base properties, when the ratio of cations and anions is changed. However, they can only be used under an inert atmosphere or vacuum, due to their high moisture sensitivity. On the other hand, it has been found that ionic liquids containing anions such as hexafluorophosphate form stable salts in air, which lead to the synthesis of numerous stable ionic liquids today. Furthermore, some ionic liquids have very low solubility in water and polar organic solvents. Utilization of this property enables recovery and reuse of ionic liquids, after extracting the product with an organic solvent. That can help to reduce the waste of traditional solvents which are rarely reused. Moreover, ionic liquids have attracted much attention as safe solvents, due to their low volatility.

The followings are some reaction examples using ionic liquids.

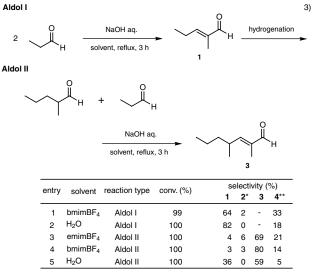

1. Diels-Alder reaction

The Diels-Alder reaction between cyclopentadiene and methyl acrylate ester has been reported. In the Diels Alder reaction using 1-ethyl-3-methylimidazolium chloride / chloroaluminate [emimCl/(AlCl₃)_X], the *endo / exo* ratio of the products varies largely, depending on the ratio of emimCl/ (AlCl₃)_X. The amount of *endo*-form increases four-fold with the acidic emimCl/(AlCl₃)_X, compared to that of the basic emimCl/ (AlCl₃)_X.^{1a)} When the same reaction is carried out with 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF₄), it showed similar reactivity to Lewis basic emimCl/(AlCl₃)_X.^{1b)}



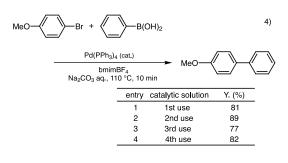
2. Heck reaction

In the Heck reaction using palladium catalysts, polar solvents such as DMF and acetonitrile are employed, and aryl iodides are normally used as substrates. In cases where the less expensive but less reactive aryl bromides or chlorides are employed, it is necessary to use more active catalysts or add phosphine ligands in order to retain the catalytic activity. By utilizing 1-butyl-3-methylimidazolium bromide (bmimBr) as solvent, aryl bromides react with styrene to afford stilbenes in high yields without adding a phosphine ligand.^{2a)}

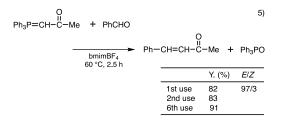

The reaction of enol ethers bearing an electron donating group with aryl halides generates a mixture of α -substituents and β -substituents under the normal Heck reaction conditions. However, the reaction of vinyl ethers with aryl halides using bmimBF₄ as solvent gives only α -substituents specifically.^{2b)} In addition, the Heck reaction employing tetrabutylammonium bromide (Bu₄NBr), which is a quaternary ammonium salt, has been reported.^{2c)}

*DPPP (2 eq.), time : 24 h

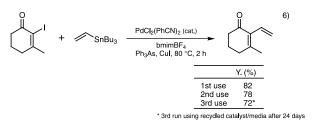
3. Aldol condensation


The Aldol condensation reaction using ionic liquids has been reported. In the reaction for obtaining 2,4-dimethylhept-2-enal **3** from propanal via two Aldol condensations, the conversion values of the ionic liquid phase is comparable to water medium in the Aldol I reaction. However, the product selectivity is reduced, as can be seen in the figure below. This is due to a side reaction proceeding from the high solubility of product **1** toward the ionic liquid. In contrast, in the Aldol II reaction, as compared with the reaction in water, the product selectivity in ionic liquids are increased. This is because the hydrogenated product of **1** is difficult to dissolve in water but easy in ionic liquids.³⁾

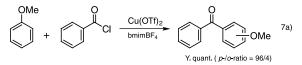
*2: 3-hydroxy-2-methylpentanal, ** 4: higher boiling aldehydes and oligomers.


4. Suzuki-Miyaura coupling reaction

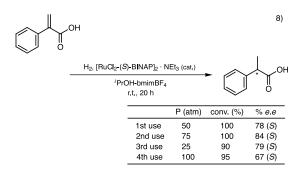
In the Suzuki-Miyaura coupling reaction where biaryls are produced from aryl halides and aryl boronic acids in the presence of a palladium catalyst and a base, the removal of the catalyst is often a problem. In the system where an ionic liquid is used as solvent, the product can be extracted with ether after the reaction is complete, with the catalyst being retained in the ionic liquid. The ionic liquid and the catalyst can then be reused as they are.⁴⁾


5. Wittig reaction

The Wittig reaction is a useful method for C-C double bond formation. However, the separation of the product and the byproduct, triphenylphosphine oxide, is a classic problem. The separation and purification are usually carried out by crystallization or chromatography. When an ionic liquid is used as solvent, the product and phosphine oxide can be easily separated by combining an ether extraction and a toluene extraction after the reaction is complete. In addition, it is possible to efficiently reuse the ionic liquid.⁵⁾


6. Stille reaction

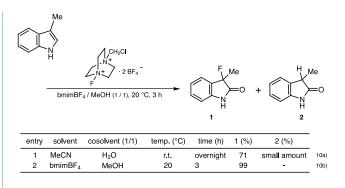
The Stille reaction is a useful reaction, where an organotin compound and an electrophilic reagent are reacted to form a C-C bond under mild conditions in the presence of palladium catalyst. In the reaction of vinyltributyltin and iodocyclohexenone in an ionic liquid, the product can be extracted with ether, and the catalyst is retained in the ionic liquid. The ionic liquid and the catalyst can be reused as they are. This ionic liquid / catalyst phase is air and moisture stable, and thus can be used after a long storage without loss in activity.⁶⁾


7. Friedel-Crafts reaction

Here is an example of the Friedel-Crafts reaction. In the benzoylation of anisoles catalyzed by copper triflate in bmimBF₄, methoxybenzophenone is quantitatively obtained within 1h, with a *p*- / *o*-product ratio of 96/4.^{7a)} The same reaction performed using acetonitrile gave a lower conversion of 64% at 1h, with the reduced *p*- / *o*-product ratio of 93/7. In addition, the regioselective acylations of indoles using emimCl/(AlCl₃)_x has been reported as well.^{7b)}

8. Hydrogenation

In the asymmetric hydrogenation of C-C double bond using homogeneous chiral transition metal complexes, the recovery of the catalyst and the seperation of the products are often troublesome.⁸⁾ Dupont *et al.* have reported an example in which the reagents are allowed to react in a two phase system of an ionic liquid and an alcohol. After the reaction is complete, the product exists in the alcoholic phase, while the catalyst in the ionic liquid phase. Thus, the product and the catalyst can be easily separated by decantation. In addition, the catalyst which exists in the ionic liquid phase can be reused without loss in activity.


9. Reduction

The reduction of aldehydes using trialkylboranes is an important organic transformation reaction. However, reductions using simple trialkylboranes generally require reaction temperatures in excess of 150 °C. Kabalka *et al.* have reported this reduction using trialkylborane in which bmimBF₄, emimBF₄, and 1-ethyl-3-methylimidazolium hexafluorophosphate (emimPF₆) are used as solvents.^{9a)} For example, when benzaldehyde was reduced by tributylborane in emimPF₆, the reaction proceeded rapidly at 100 °C to give the product in high yield. Although long reaction time is needed comparatively, the product can be obtained even at room temperature. In addition, a photoreduction has also been reported using ionic liquids.^{9b)}

СНО	Bu₃B (1 eq.) ionic liquid	- CH ₂ C	DH 9a)
ionic liquid	temp. (°C)	time (h)	Y. (%)
bmimBF ₄	100	16	93
emimBF ₄	100	16	90
emimPF ₆	100	16	96
emimPF ₆	r.t.	48	94

10. Fluorination

The introduction of fluorines in to heterocyclic compounds is important in the synthesis of bioactive compounds. In the electrophilic fluorination of indoles using *N*-fluoro-*N'*-(chloromethyl)triethylenediamine bis(tetrafluoroborate) as fluorinating agent and bmimBF₄ as a solvent, 3-fluorinated 2-oxoindoles can be obtained in high yield in a short period of time compared to the conventional method (entry 1).¹⁰⁾

11. Ring opening reaction

β-Aminoalcohols are utilized as useful building blocks for the synthesis of bioactive compounds. One of the synthetic methods to obtain β-aminoalcohols involves the ring opening of epoxides using amines. However, these reactions require a large excess of the amines at elevated temperatures. The high temperature reaction conditions are not only detrimental to certain functional groups but also to the control of regioselectivity. Subsequently, a variety of activators or promoters such as metal amides, metal triflates and transition metal halides have been developed. However, many of these are often expensive or are needed in stoichiometric amounts, thus limiting their practicality. In the system using ionic liquids, the reaction proceeds at room temperature to give β-aminoalcohols in high yield.¹¹

						11)
	+ R ³ -N	IH _{2 b}	mimBF ₄ , r.t.	$\rightarrow \qquad \underset{R^{1}}{\overset{\text{NHR}^{3}}{\underset{R^{2}}{\overset{\text{OH}}{}}} $	+ R ¹	NHR ²
entry	R ¹	R ²	R ³	product	time (h)	Y. (%)
1	Ph	н	Ph	Ph OH	5.0	85
2	-(CH ₂)4-	Ph	,OH NHPh	6.0	83
3	$PhOCH_2$	н	Ph	PhONHPh	6.0	89
4	Bu	н	p-tol	Bu NH-p-tol	6.0	85

In the cases of glycidyl ether or alkyloxiranes in entry 3 and 4, amines attack on the less sterically hindered site on the epoxides. After the reaction, the product was extracted with ether, followed by drying at 80 °C under reduced pressure. The ionic liquid was reused in five runs without any loss of activity.

12. Enzymatic reaction

Enzymatic reactions using ionic liquids have also been reported.¹²⁾ It is known that lipase tolerates non-natural reaction conditions, and reactions in organic solvents have intensively been carried out. For example, transesterifications in organic solvents are well known as a useful synthetic methods for the preparation of optically-active compounds. In the asymmetric transesterification of allylic alcohols using ionic liquids, the desired products are afforded in similar yields to those of organic solvent systems.^{12a)}

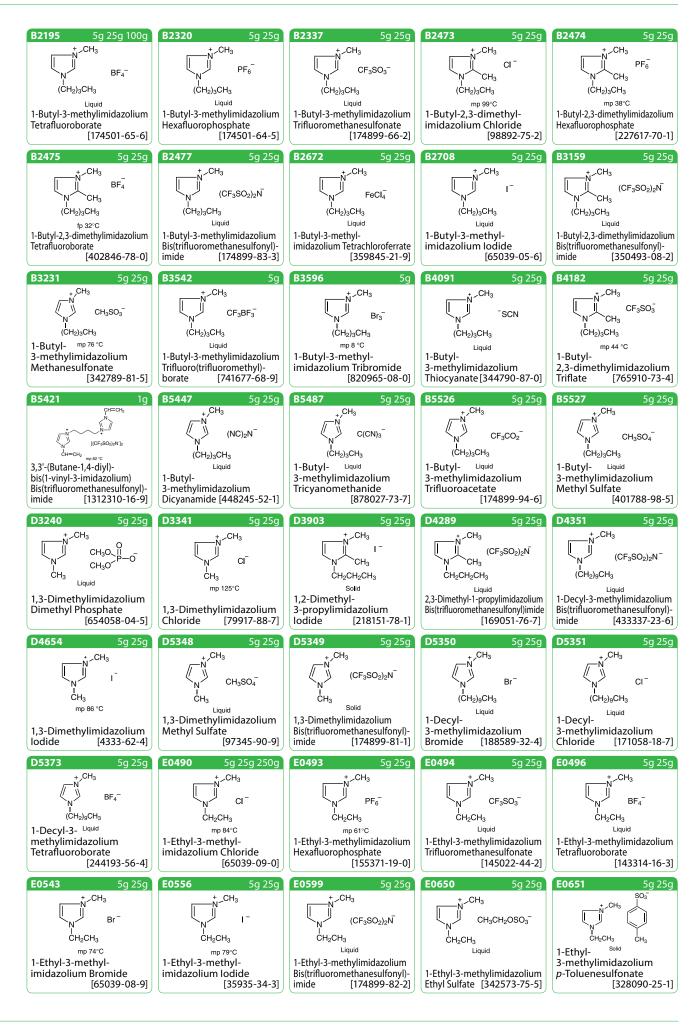
As described above, a variety of reactions utilizing ionic liquids have been conducted, and the improvement of yields and the recovery and reuse of solvents have been reported. Furthermore, they are also applied to alkylations¹³, allylations¹⁴, epoxidations¹⁵, cycloadditions¹⁶, hydroesterifications¹⁷, and reactions using supercritical CO_2^{18} , in which they are reported to be effective.

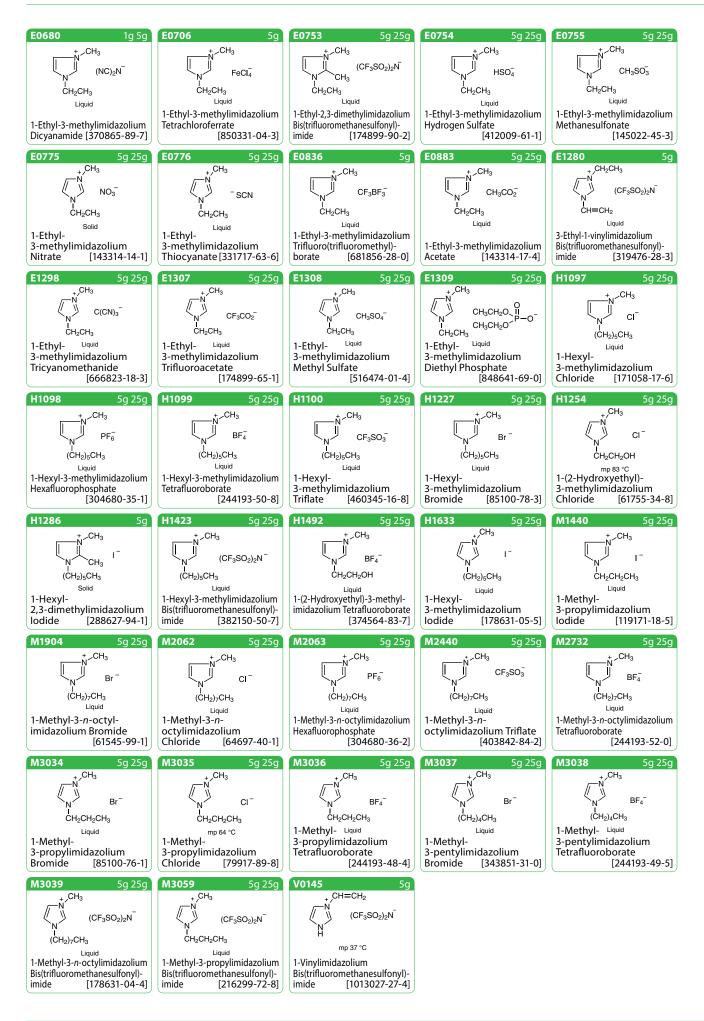
13. Other application

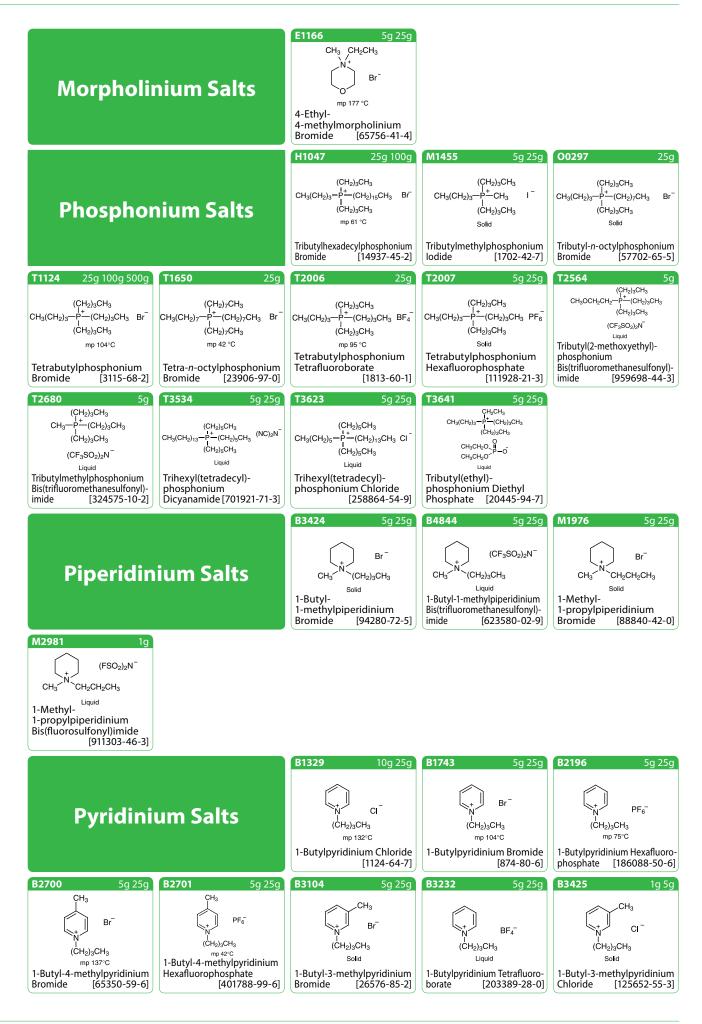
lonic liquids are attracting attention in electrochemical application, because they consist of only ions and have high ionic conductivity. For example, they have been extensively studied as secondary battery electrolytes. These electrolytes require properties such as high ionic conductivity, non-volatility, thermal stability, non-flammability, and non-corrosiveness. Ionic liquids meet these requirements. Moreover, 1-alkyl-3-methylimidazolium iodide has been recently examined as an electrolyte of dye-sensitized solar cells.¹⁹

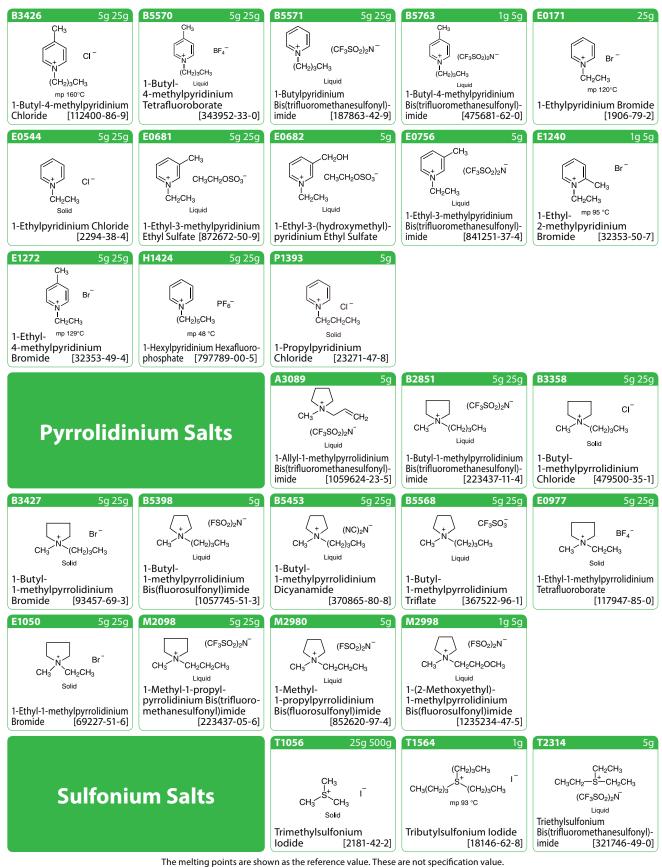
Recently Hamaguchi *et al.* reported that 1-butyl-3-methylimidazolium tetrachloroferrate is magnetic ionic liquid.²⁰⁾ Traditional magnetic fluids have had problems of volatility and phase separation. The new magnetic ionic liquid overcomes these problems, and is expected to be applied to many fields, including the use as a sealing agent for the motor axis.

References


- 1) a) C. W. Lee, *Tetrahedron Lett*. **1999**, *40*, 2461; b) T. Fischer, A. Sethi, T. Welton, J. Woolf, *Tetrahedron Lett*. **1999**, *40*, 793.
- a) L. Xu, W. Chen, J. Xiao, Organometallics 2000, 19, 1123; b) L. Xu,
 W. Chen, J. Ross, J. Xiao, Org. Lett. 2001, 3, 295; c) V. P. W. Böhm, W.


- A. Herrmann, Chem. Eur. J. 2000, 6, 1017.
- C. P. Mehnert, N. C. Dispenziere, R. A. Cook, *Chem. Commun.* 2002, 1610.
- 4) C. J. Mathews, P. J. Smith, T. Welton, Chem. Commun. 2000, 1249.
- 5) V. L. Boulaire, R. Grée, Chem. Commun. 2000, 2195.
- 6) S. T. Handy, X. Zhang, Org. Lett. **2001**, *3*, 233.
- a) J. Ross, J. Xiao, *Green Chem.* 2002, *4*, 129; b) K.-S. Yeung, M. E.
 Farkas, Z. Qiu, Z. Yang, *Tetrahedron Lett.* 2002, *43*, 5793; c) A. Stark,
 B. L. MacLean, R. D. Singer, *J. Chem. Soc., Dalton Trans.* 1999, 63; d)
 C. J. Adams, M. J. Earle, G. Roberts, K. R. Seddon, *Chem. Commun.* 1998, 2097.
- 8) A. L. Monteiro, F. K. Zinn, R. F. de Souza, J. Dupont, *Tetrahedron:* Asymmetry **1997**, 8, 177.
- 9) G. W. Kabalka, R. R. Malladi, *Chem. Commun.* **2000**, 2191; b) J. L. Reynolds, K. R. Erdner, P. B. Jones, *Org. Lett.* **2002**, *4*, 917.
- a) Y. Takeuchi, T. Tarui, N. Shibata, *Org. Lett.* **2000**, *2*, 639; b) J.
 Baudoux, A.-F. Salit, D. Cahard, J.-C. Plaquevent, *Tetrahedron Lett.* **2002**, *43*, 6573.
- 11) J. S. Yadav, B. V. S. Reddy, A. K. Basak, A. V. Narsaiah, *Tetrahedron Lett.* **2003**, *44*, 1047.
- 12) a) T. Itoh, E. Akasaki, K. Kudo, S. Shirakami, *Chem. Lett.* 2001, 262; b)
 R. M. Lau, F. van Rantwijk, K. R. Seddon, R. A. Sheldon, *Org. Lett.* 2000, *2*, 4189; c)
 S. Park, R. J. Kazlauskas, *J. Org. Chem.* 2001, *66*, 8395; d)
 T. Itoh, S.-h. Han, Y. Matsushita, S. Hayase, *Green Chem.* 2004, *6*, 437; e)
 T. Ito, *Yuki Gosei Kagaku Kyokaishi (J. Synth. Org. Chem. Jpn.*) 2009, *67*, 143.
- 13) M. Badri, J.-J. Brunet, Tetrahedron Lett. 1992, 33, 4435.
- 14) C. M. Gordon, A. McCluskey, Chem. Commun. 1999, 1431.
- 15) G. S. Owens, M. M. Abu-Omar, Chem. Commun. 2000, 1165.
- 16) a) J. Peng, Y. Deng, *New J. Chem.* 2001, *25*, 639; b) J. F. Dubreuil, J.
 P. Bazureau, *Tetrahedron Lett.* 2000, *41*, 7351.
- 17) a) K. Qiao, Y. Deng, *New J. Chem.* **2002**, *26*, 667; b) D. Zim, R. F. de Souza, J. Dupont, A. L. Monteiro, *Tetrahedron Lett.* **1998**, *39*, 7071.
- 18) S. V. Dzyuba, R. A. Bartsch, Angew. Chem. Int. Ed. 2003, 42, 148.
- 19) a) P. Bonhote, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel, *Inorg. Chem.* **1996**, *35*, 1168.
- 20) a) S. Hayashi, H. Hamaguchi, *Chem. Lett.* **2004**, *33*, 1590; b)H. Hamaguchi, *Expected Materials for the Future (Mirai Zairyo)* **2005**, *5*, 29.


Reviews


21) a) T. Welton, *Chem. Rev.* **1999**, *99*, 2071; b) J. D. Holbrey, K. R. Seddon, *Clean Prod. Proc.* **1999**, *1*, 223; c) P. Wasserscheid, W. Keim, *Angew. Chem. Int. Ed.* **2000**, *39*, 3772; d) R. Sheldon, *Chem. Commun.* **2001**, 2399; e) D. Zhao, M. Wu, Y. Kou, E. Min, *Catal. Today* **2002**, *74*, 157.

Ammoni (1966 5g	um Salts	$\begin{array}{c} \textbf{A2274} \qquad \qquad 5g\\ \begin{array}{c} CH_2CH_3\\ H_3(CH_2)_4-N^+CH_2CH_3\\ CH_2CH_3\\ (CF_3SO_2)_2N^-\\ Liquid\\ Amyltriethylammonium\\ Bis(trifluoromethanesulfonyl)-imide \qquad [906478-91-9]\\ \hline \textbf{D5238} \qquad 1g\\ CH_2CH_3\\ \end{array}$	B3233 5g CH ₃ CH ₃ (CF ₃ SO ₂) ₂ N ⁻ CH ₃ (CH ₂) ₃ -N ⁴ -CH ₃ (CF ₃ SO ₂) ₂ N ⁻ CH ₃ Butyltrimethylammonium Bis(trifluoromethanesulfonyl)- imide [258273-75-5] E1275 1g CH ₃ CH ₃	$\begin{array}{c} \textbf{B5427} & \textbf{5g} \\ \hline \\ \textbf{CH}_3 \textbf{CH}_2 - \textbf{N}^+ \textbf{CH}_2 - \textbf{O}^+ \textbf{CH}_2 \\ \textbf{CH}_3 \textbf{CH}_3 \textbf{CH}_3 \textbf{CH}_3 \\ \textbf{(CF}_3 \textbf{SO}_2)_2 \textbf{N}^- \\ \textbf{Benzyl(ethyl)} \\ \textbf{dimethylammonium} \\ \textbf{Bis(trifluoromethanesulfonyl)} \\ \textbf{inide} & [1186103-43-4] \end{array}$
I+−CH ₃ CH ₃ (CF ₃ SO ₂) ₂ N [−] Solid Cyclohexyltrimethylammonium Bis(trifluoromethanesulfonyl)- imide [952155-74-7]	CH ₃ −N ⁺ −CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ (FSO ₂) ₂ N ⁻ Liquid Diethyl(methyl)- propylammonium Bis(fluorosulfonyl)imide [1235234-32-8]	CH ₃ -H ² -CH ₂ CH ₂ OCH ₃ CH ₂ CH ₃ (FSO ₂) ₂ N ⁻ Liquid Diethyl(2-methoxyethyl)- methylammonium Bis(fluorosulfonyl)imide [1079129-48-8]	$\begin{array}{c} \underset{CH_3CH_2-h_2^{L-}CH_2CH_2OCH_3}{CH_3}\\ \underset{CH_3}{(FSO_2)_2N^{-}}\\ \\ Ethyl(2-methoxyethyl)-\\ dimethylammonium\\ Bis(fluorosulfonyl)imide\\ [1235234-35-1] \end{array}$	$\begin{array}{c} CH_3CH_2\overset{h^+-}{L}-CH_2CH_2OCH_3\\ & CH_3\\ & (CF_3SO_2)_2N^-\\ \\ Ethyl(2-methoxyethyl)-\\ dimethylammonium\\ Bis(trifluoromethanesulfonyl)-\\ imide \qquad [557788-37-1] \end{array}$
E1282 5g CH3 CH3CH2-N-(CH2)3OCH3 CH3CH2-N-(CH2)3OCH3 CH3 (CF3SO2)2N ⁻ Liquid Ethyl(3-methoxypropyl)- dimethylammonium Bis(trifluoromethanesulfonyl)- imide [1373334-05-4]	E1283 1g 5g CH ₃ CH ₂ -N ⁻ -CH ₂ CH ₂ -CH	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} \hline \textbf{C0054} & 25g \ 100g \ 500g \\ (CH_2)_3CH_3 \\ CH_3(CH_2)_3 - N^{-}(CH_2)_3CH_3 \ Br^{-} \\ (CH_2)_3CH_3 \\ mp \ 103^{\circ}C \\ \hline \textbf{Tetrabutylammonium} \\ Bromide & [1643-19-2] \end{array}$	$\begin{array}{c c} & 5g \ 25g \ 100g \\ & (CH_2)_3CH_3 \\ CH_3(CH_2)_3-{N^+}(CH_2)_3CH_3 \ CI^- \\ & (CH_2)_3CH_3 \\ & mp \ 70^\circ C \\ \hline Tetrabutylammonium \\ Chloride & [1112-67-0] \\ \hline \end{array}$
CH203CH3 I CH3(CH2)3CH3 I CH3(CH2)3-H (CH2)3CH3 I (CH2)3CH3 mp 147 °C Tetrabutylammonium Iodide [311-28-4]	$\begin{array}{c c} \hline \textbf{T0914} & 25g \ 100g \ 500g \\ (CH_2)_3CH_3 & \\ CH_3(CH_2)_3-N-(CH_2)_3CH_3 & BF_4^- \\ (CH_2)_3CH_3 & \\ mp \ 161 \ ^{\circ}C & \\ \hline \textbf{Tetrabutylammonium} \\ \textbf{Tetrafluoroborate} \\ [429-42-5] \end{array}$	$\begin{array}{c c} \textbf{T1010} & \textbf{5g 25g} \\ & (CH_2)_5CH_3 & \\ CH_3(CH_2)_5-\overset{I}{M_{-}}(CH_2)_5CH_3 & I^- \\ & (CH_2)_5CH_3 & \\ & mp \ 100 \ ^{\circ}C & \\ \hline \textbf{Tetrahexylammonium} \\ \textbf{lodide} & [2138-24-1] \end{array}$	T1011 5g 25g (CH2)_4CH3 - CH3(CH2)_4-H(CH2)_4CH3 - (CH2)_4CH3 - mp 137 °C - Tetraamylammonium - Iodide [2498-20-6]	T1155 5g (CH ₂) ₇ CH ₃ - CH ₃ (CH ₂) ₇ N(CH ₂) ₇ CH ₃ - (CH ₂) ₇ CH ₃ - Tetra-n-octylammonium - lodide [16829-91-7]
T127025+250				
T1279 25g 250g	(CHa)aCHa	T1432 5g 25g	T1433 5g 25g	T1568 10g 25g
$(CH_2)_3CH_3 \\ CH_3(CH_2)_3 - N^+ (CH_2)_3CH_3 \\ I \\ (CH_2)_3 - N^+ (CH_2)_3CH_3 \\ Solid \\ Solid \\ Tetrabutylammonium \\ Hexafluorophosphate \\ \label{eq:charge}$	$(CH_2)_6CH_3$ H $(CH_2)_6CH_3$ I^- $CH_3(CH_2)_6-M_3$ I^- $(CH_2)_6CH_3$ mp 123 °C Tetraheptylammonium	(CH ₂) ₄ CH ₃ CH ₃ (CH ₂) ₄ —N ⁺ —(CH ₂) ₄ CH ₃ Br [−] (CH ₂) ₄ CH ₃ mp 101 °C Tetraamylammonium	(CH ₂) ₄ CH ₃ CH ₃ (CH ₂) ₄ —N ⁺ —(CH ₂) ₄ CH ₃ CI [−] I (CH ₂) ₄ CH ₃ Solid Tetraamylammonium	$(CH_2)_3CH_3 \\ CH_3(CH_2)_3 - H_{}(CH_2)_3CH_3 \\ CH_3(CH_2)_3 - H_{}(CH_2)_3CH_3 \\ (CH_2)_3CH_3 \\ mp \ 113 \ C$
(CH ₂) ₃ CH ₃ CH ₃ (CH ₂) ₃ —N ⁺ (CH ₂) ₃ CH ₃ PF ₆ ⁻ (CH ₂) ₃ CH ₃ Solid Tetrabutylammonium	$(CH_2)_6CH_3$ $H = CH_3(CH_2)_6-M_3 = H = CH_3(CH_2)_6-M_3 = H = (CH_2)_6CH_3$ mp 123 °C	(CH ₂) ₄ CH ₃ CH ₃ (CH ₂) ₄ —N ⁺ —(CH ₂) ₄ CH ₃ Br ⁻ (CH ₂) ₄ CH ₃ mp 101 °C	$(CH_2)_4CH_3$ $CH_3(CH_2)_4-N_{4}(CH_2)_4CH_3$ $CI^{}$ $(CH_2)_4CH_3$ Solid	(CH ₂) ₃ CH ₃ CH ₃ (CH ₂) ₃ CH ₃ CF ₃ SO ₃ (CH ₂) ₃ CH ₃ CF ₃ SO ₃ (CH ₂) ₃ CH ₃ mp 113 °C Tetrabutylammonium Triflate [35895-70-6] T2679 5g 25g
$(CH_2)_3CH_3 \\ CH_3(CH_2)_3-N \rightarrow (CH_2)_3CH_3 \ PF_6 \\ (CH_2)_3CH_3 \\ Solid \\ Tetrabutylammonium \\ Hexafluorophosphate \\ [3109-63-5] \\ \hline \end{tabular}$	$(CH_2)_6CH_3 \qquad (CH_2)_6CH_3 \qquad (CH_3)_6-N \qquad (CH_2)_6CH_3 \qquad (CH_2)_6CH_3 \qquad mp \ 123 \ ^{\circ}C \qquad (CH_2)_6CH_3 \qquad (C$	$(CH_2)_4CH_3 \\ CH_3(CH_2)_4 - N^{t}_{-}(CH_2)_4CH_3 Br^{-1} \\ (CH_2)_4CH_3 \\ mp \ 101 \ ^{\circ}C \\ Tetraamylammonium \\ Bromide [866-97-7] \\ \hline \label{eq:stars}$	$\begin{array}{c} (CH_2)_4 CH_3 \\ CH_3 (CH_2)_4 - N_{-}^{+} - (CH_2)_4 CH_3 CI^{-} \\ (CH_2)_4 CH_3 CI^{-} \\ (CH_2)_4 CH_3 \\ Solid \\ \hline Tetraamylammonium \\ Chloride \qquad [4965-17-7] \end{array}$	$\begin{array}{c} (CH_{2})_{3}CH_{3} \\ CH_{3}(CH_{2})_{3}-{$
$(CH_2)_3CH_3 \\ CH_3(CH_2)_3-N - (CH_2)_3CH_3 \ PF_6 \\ (CH_2)_3CH_3 \\ Solid \\ Tetrabutylammonium \\ Hexafluorophosphate \\ [3109-63-5] \\ \hline \textbf{T1599} \ \textbf{25g} \\ (CH_2)_5CH_3 \\ CH_3(CH_2)_5-N - (CH_2)_5CH_3 \ Br \\ (CH_2)_5CH_3 \\ CH_3(CH_2)_5-N - (CH_2)_5CH_3 \ Br \\ \hline \textbf{1} \\ (CH_2)_5CH_3 \\ \hline \textbf{1} \\ \textbf{25g} \\ \hline \textbf{1} \\ \textbf{1} \\ \textbf{25g} \\ \hline \textbf{1} \\ \textbf{25g} \\ \hline \textbf{1} \\ \textbf{1} \\ \textbf{25g} \\ \hline \textbf{1} \\ \textbf{25g} \\ \hline \textbf{1} \\ \textbf{1} \\ \textbf{25g} \\ \hline \textbf{1} \\ \textbf{25g} \\ \hline \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{25g} \\ \hline \textbf{1} \\ \textbf{1} \\ \textbf{25g} \\ \hline \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{25g} \\ \hline \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{25g} \\ \textbf{1} \\ $	$(CH_2)_6CH_3 \qquad (CH_2)_6CH_3 \qquad I^- \\ Iddide \qquad [3535-83-9] \\ \hline \textbf{T1602} \qquad \textbf{5g 25g} \\ \hline \textbf{CH}_3(CH_2)_6-\textbf{N}^+ - (CH_2)_6CH_3 \qquad Br^- \\ (CH_2)_6CH_3 \qquad Br^- \\ (CH_2)_6CH_3 \\ \hline \textbf{CH}_3(CH_2)_6CH_3 \qquad Br^- \\ \hline \textbf{CH}_3(CH_2)_6CH_3 \$	$(CH_2)_4CH_3 \\ CH_3(CH_2)_4 - N^+ - (CH_2)_4CH_3 Br^- \\ (CH_2)_4CH_3 Br^- \\ (CH_2)_4CH_3 Br^- \\ (CH_2)_4CH_3 Br^- \\ (CH_2)_7CH_3 Br^- \\ (CH_2)_7$	$\begin{array}{c} (CH_2)_4CH_3 \\ CH_3(CH_2)_4-N_{-}(CH_2)_4CH_3 \ CI_{-}(CH_2)_4CH_3 \ Solid \\ \hline Tetraamylammonium \\ Chloride \ [4965-17-7] \\ \hline \textbf{T2106} \ \textbf{25g} \\ \hline \textbf{CH}_2CH_2CH_3 \ CH_3CH_2CH_2CH_3 \ CH_3CH_2CH_2CH_3 \ CH_2CH_2CH_3 \ CH_2CH_3 \ CH_2CH_2CH_3 \ CH_3CH_2CH_3 \ CH_3CH_3CH_3 \ CH_3CH_3CH_3CH_3 \\ \hline \textbf{CH}_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH$	$\begin{array}{c} (CH_{2})_{3}CH_{3} \\ (CH_{2})_{3}-H_{-}^{i}-(CH_{2})_{3}CH_{3} \\ (CH_{2})_{3}-H_{-}^{i}-(CH_{2})_{3}CH_{3} \\ (CH_{2})_{3}CH_{3} \\ mp 113 ^{\circ}C \end{array}$
$(CH_2)_3CH_3 \\ CH_3(CH_2)_3 - N^+ (CH_2)_3CH_3 PF_6^- \\ (CH_2)_3CH_3 Solid \\ Tetrabutylammonium \\ Hexafluorophosphate [3109-63-5] \\ \hline \textbf{T1599} 25g \\ (CH_2)_5CH_3 \\ CH_3(CH_2)_5 - N^- (CH_2)_5CH_3 Br^- \\ (CH_2)_5CH_3 \\ mp 99 \ ^{\circ}C \\ \hline Tetrahexylammonium \\ \hline \end{tabular}$	$\begin{array}{c} (CH_2)_6CH_3 \\ CH_3(CH_2)_6-N \\ (CH_2)_6CH_3 \\ mp 123 \ ^{\circ}C \end{array}$ Tetraheptylammonium lodide [3535-83-9] $\begin{array}{c} \textbf{T1602} \qquad \textbf{5g 25g} \\ \textbf{(CH_2)_6CH_3 \\ I \\ CH_3(CH_2)_6-N \\ (CH_2)_6CH_3 \\ mp 89 \ ^{\circ}C \end{array}$ Tetraheptylammonium Bromide [4368-51-8] $\begin{array}{c} \textbf{T2761} \qquad \textbf{5g 25g} \\ CH_3 \\ CH_$	$(CH_{2})_{4}CH_{3}$ $CH_{3}(CH_{2})_{4}-N^{t}-(CH_{2})_{4}CH_{3} Br^{-1}$ $(CH_{2})_{4}CH_{3} Br^{-1}$ $(CH_{2})_{4}CH_{3} Br^{-1}$ $(CH_{2})_{4}CH_{3} Br^{-1}$ $TetraamylammoniumBromide [866-97-7]$ $T1603 10g 25g$ $(CH_{2})_{7}CH_{3} Br^{-1}$	$(CH_2)_4CH_3 \\ CH_3(CH_2)_4-N_{-}(CH_2)_4CH_3 CI_{(CH_2)_4CH_3} CI_{(CH_2)_4CH_3} CI_{(CH_2)_4CH_3} CI_{(CH_2)_4CH_3} CI_{(CH_2)_4CH_3} CI_{(CH_2)_4CH_3} CH_2CH_2CH_2CH_3 CH_2CH_2CH_3 CH_2CH_2CH_3 CI_{-} CH_2CH_2CH_2CH_3 CI_{-} CH_2CH_2CH_2CH_3 CI_{-} CH_2CH_2CH_2CH_3 CI_{-} CH_2CH_2CH_2CH_3 CI_{-} CH_2CH_2CH_3 CI_{-} CH_2CH_2CH_2CH_3 CI_{-} CH_2CH_2CH_2CH_3 CI_{-} CH_2CH_2CH_2CH_3 CI_{-} CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$	$\begin{array}{c} (CH_{2})_{3}CH_{3} \\ CH_{3}(CH_{2})_{3}-N^{-}-(CH_{2})_{3}CH_{3} \\ (CH_{2})_{3}CH_{3} \\ mp 113 ^{\circ}C \end{array}$
$(CH_2)_3CH_3 \\ CH_3(CH_2)_3-N^+(CH_2)_3CH_3 PF_6^- \\ (CH_2)_3CH_3 PF_6^- \\ (CH_2)_5CH_3 PF_6^- \\ (CH_2)_5CH_$	$\begin{array}{c} (CH_2)_6CH_3 \\ CH_3(CH_2)_6^{-}N^{+-}(CH_2)_6CH_3 & I^{-} \\ (CH_2)_6CH_3 \\ mp \ 123 \ ^{\circ}C \end{array}$ Tetraheptylammonium lodide [3535-83-9] $\begin{array}{c} \textbf{T1602} \qquad \textbf{5g 25g} \\ (CH_2)_6CH_3 \\ CH_3(CH_2)_6^{-}N^{+-}(CH_2)_6CH_3 & Br^{-} \\ (CH_2)_6CH_3 \\ mp \ 89 \ ^{\circ}C \end{array}$ Tetraheptylammonium Bromide [4368-51-8] $\begin{array}{c} \textbf{T2761} \qquad \textbf{5g 25g} \\ CH_3 \\ CH_3^{-}CH_3 \\ CH_3^{-}CH_3 \\ CH_3^{-}CH_3 \\ CH_3^{-}CH_3 \\ CH_3 \\ CH_3^{-}CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ \end{array}$	$(CH_2)_4CH_3 \\ CH_3(CH_2)_4 - N^+ - (CH_2)_4CH_3 Br^- \\ (CH_2)_4CH_3 Br^- \\ (CH_2)_4CH_3 Br^- \\ (CH_2)_4CH_3 Br^- \\ (CH_2)_7CH_3 Br^- \\ (CH_2)_7$	$(CH_2)_4CH_3 \\ CH_3(CH_2)_4 - N_{-}^+ - (CH_2)_4CH_3 CI \\ (CH_2)_4CH_3 \\ Solid \\ \hline Tetraamylammonium \\ Chloride [4965-17-7] \\ \hline T2106 25g \\ CH_2CH_2CH_3 \\ CH_3CH_2CH_2 - N_{-}^+ - CH_2CH_2CH_3 \\ CH_2CH_2CH_2 \\ CH_2CH_2CH_3 \\ CH_2CH_2CH_3 \\ CH_2CH_2CH_3 \\ CH_3CH_3 \\ CH_3CH_3 \\ CH_3(CH_2)_3 - N_{-}^+ - (CH_2)_3CH_3 \\ (CH_2)_3 CH_3 \\$	$\begin{array}{c} (CH_{2})_{3}CH_{3} \\ CH_{3}(CH_{2})_{3}-N^{-}-(CH_{2})_{3}CH_{3} \\ (CH_{2})_{3}CH_{3} \\ mp 113 ^{\circ}C \end{array}$

The salts that form liquid or solid state at room temperature are given the description "liquid" or "solid".

Ordering and Customer Service

TCI AMERICA

Tel : 800-423-8616 / 503-283-1681 Fax : 888-520-1075 / 503-283-1987 E-mail : Sales-US@TCIchemicals.com

TCI EUROPE N.V. : +32 (0)3 735 07 00 Te

: +32 (0)3 735 07 01 Fax E-mail : Sales-EU@TCIchemicals.com

TCI Deutschland GmbH

Tel : +49 (0)6196 64053-00 Fax : +49 (0)6196 64053-01 E-mail : Sales-DE@TCIchemicals.com

Tokyo Chemical Industry UK Ltd. Te

: +44 (0)1865 784560 : +44 (0)1865 784561 Fax

E-mail : Sales-UK@TCIchemicals.com

- TCI Chemicals (India) Pvt. Ltd.
- Te : 1800 425 7889 / 044-2262 0909 Fax :044-2262 8902
- E-mail : Sales-IN@TCIchemicals.com
- Availability, price or specification of the listed products are subject to change without prior notice. Reproduction forbidden without the prior written consent of Tokyo Chemical Industry Co., Ltd.

梯希爱(上海)化成工业发展有限公司 Tel

: 800-988-0390 / 021-67121386 : 021-6712-1385 Fax E-mail : Sales-CN@TCIchemicals.com

TOKYO CHEMICAL INDUSTRY CO., LTD.

Tel :+81 (0)3-5640-8878 Fax :+81 (0)3-5640-8902 E-mail : globalbusiness@TCIchemicals.com

www.TCIchemicals.com